Individual vesicle fusion events mediated by lipid-anchored DNA.
نویسندگان
چکیده
Membrane fusion consists of a complex rearrangement of lipids and proteins that results in the merger of two lipid bilayers. We have developed a model system that employs synthetic DNA-lipid conjugates as a surrogate for the membrane proteins involved in the biological fusion reaction. We previously showed that complementary DNA-lipids, inserted into small unilamellar vesicles, can mediate membrane fusion in bulk. Here, we use a model membrane architecture developed in our lab to directly observe single-vesicle fusion events using fluorescence microscopy. In this system, a planar tethered membrane patch serves as the target membrane for incoming vesicles. This allows us to quantify the kinetics and characteristics of individual fusion events from the perspective of the lipids or the DNA-lipids involved in the process. We find that the fusion pathways are heterogeneous, with an arrested hemi-fusion state predominating, and we quantitate the outcome and rate of fusion events to construct a mechanistic model of DNA-mediated vesicle fusion. The waiting times between docking and fusion are distributed exponentially, suggesting that fusion occurs in a single step. Our analysis indicates that when two lipid bilayers are brought into close proximity, fusion occurs spontaneously, with little or no dependence on the number of DNA hybrids formed.
منابع مشابه
Vesicle Fusion Mediated by Solanesol-Anchored DNA.
Fusion between two lipid bilayers is one of the central processes in cell biology, playing a key role in endocytosis, exocytosis, and vesicle transport. We have previously developed a model system that uses the hybridization of complementary DNA strands to model the formation of the SNARE four-helix bundle that mediates synaptic vesicle fusion and used it to study vesicle fusion to a tethered l...
متن کاملCovalent attachment of lipid vesicles to a fluid-supported bilayer allows observation of DNA-mediated vesicle interactions.
Specific membrane interactions such as lipid vesicle docking and fusion can be mediated by synthetic DNA-lipid conjugates as a model for the protein-driven processes that are ubiquitous in biological systems. Here we present a method of tethering vesicles to a supported lipid bilayer that allows the simultaneous deposition of cognate vesicle partners displaying complementary DNA, resulting in w...
متن کاملLipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing.
A general method for synthesizing 5(')- and 3(')-coupled DNA-lipid conjugates has been developed and employed in DNA-mediated vesicle fusion. Vesicles presenting complementary DNA fuse, resulting in both outer and inner leaflet mixing as well as content mixing. Fusion is maximized using 5(')- and 3(')-coupled DNA on opposite vesicle partners, rather than only 5(')-coupled DNA, showing the impor...
متن کاملLipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release
Synaptic vesicle fusion during neurotransmitter release is mediated by assembly of SNARE- and SM-protein complexes composed of syntaxin-1, SNAP-25, synaptobrevin-2/VAMP2, and Munc18-1. Current models suggest that SNARE-complex assembly catalyzes membrane fusion by pulling the transmembrane regions (TMRs) of SNARE proteins together, thus allowing their TMRs to form a fusion pore. These models ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2013